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ABSTRACT

Define a design to be any planar set S of known area A, but unknown
shape and location; more generally, a Aesign can be any set in R" of measure
A. For example, a design might be one floor of a warehouse, or a sports
arena of known seating capacity. Suppose the design to have, say, m users, or
evaluators, with user/evaluator i having a design disutility function fi’
5 1<i<m, which can bedefined for all points in the plane independently of the designs
of interest. Given any design S, denote by Gi(S) the disutility of S to user/

evaluator i where, by definition, Gi(S) is the supremum of f_  over the set S,

1
1 <1i<m Let G(S) be the vector with entries G;(8), 1 <i<m, and
define a design to be efficient if it solves the vector minimization problem

obtained using the set of vectors {G(S):S a design}. Given mild assumptions

about the disutility functions, and a slight refinement of the design de-
finition to rule out certain pathologies, we give necéssary and sufficient
conditions for a design to be efficient, and study properties of efficient

designs.
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1. INTRODUCTION

In this paper we consider the problem of characterizing efficient designs.
To motivate the problem we first consider some examples; a precise problem
statement appears in Section 2. Examples of designs we have in mind might
include a single floor of a warehouse, or a sports arena, when either can
be idealized as a planar set S of known total area, A, but unspecified shape.
Any design S must be contained in some given planar set L, which might be the
lot of land in which thé design will lie. The design will have, say, m users,
with user i having a disutility function fi’ where fi(x) is the disutility of
the poiﬁt x in S to user i. For the warehouse problem fi(x) might be the dis-
tanée user i must travel, or pay to have traveled, in order to pick up an .
itey stored at x. For the sports arena example, fi(x) might be the dissat-
isfaction of customer i with a seat at location x. (If the arena is to
serve different purposes at different times, a customer using the arena at
different times might be represented by more than one disutility function.)
For a given design S,

Gi(S) = sup{fi(x) e %e SE Lxism,

represents the disutility of the design S to customer i, while

G(s) = (Gl(S), i Gm(S))

.

rebresents the disutility vector of the design S for all users. We call
a design S* efficient if whenever any design 'S satisfies ;
G(S) < G(s*), then if must be true that G(S) = G(S*). An efficient design
thus solves a multiple objective optimization problem, and is Pareto
optimal [10].

We remark that an evaluation of a design as given by Gi(S) might occur

when disutility can only be measured on an ordinal scale (thus precluding

adding disutilities), or when users employ the design only intermittently
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(as with a sports arena) and so might adopt the relatively simple evaluation

implied by the entrieg in G(S), or when users adopt a conservative approach
and are worried about the ''worst case'. Alternatively, the disutility of

S to user i, Gi(s)’ might be appropriate, in the warehouse context, when
the operator of the warehouse is more concerned with providing 'quick ser-
vice" to users than with minimizing total operating costs.

Allowing for different design shapes may or may not be realistic, de-
pending upon the context. In some cases efficient designs should best be
viewed as design guidelines, rather than as final answers. Further, as is
typically the case with multiple objective optimizatioﬁ problems, many dif-
ferent designs can be efficient, and the problem reﬁains of choosing among
such solutions. Never;heless we feel that the knowledge of efficient designs
should be of value in helping to delimit the compar;son of alternatives as
well as to define more sharply the design problem(s) of interest.

For putposes‘of the literature discussion we find it convenient to
consider a single point to be a degenerate design; the designs we study sub-
sequently in this paper are then nondegenerate designs. To the best of oyr
knowledge the only work for the case when m is at least two and designs are
nondegenerate is by Chalmet, Francis, and Lawrence [3]. Given any (nonde-
generate) design S they consider the case where each term Gi(S) is the ‘in-
tegral, rather than the supremum, of the function fi over the design S, and
obtain necessary and sufficient conditions for designs to be efficient. For
the case where m is one and designs are nondegenerate, Francis [5] has con-
sidered a stadium design problem, discussed in more detail in [6], which is
related to the design problems we considér. Corley and Roberts [4] and
Lowe and Hurter [12] have investigated minimizing integral functions over

(nondegenerate) planar sets in a market area context. In the latter of
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. the case where the distances are 2p distances, and concentrate upon developing

S is always contained (or enveloped) in its contour-envelope, which is an

these two papers the authors make an assumption which we also make subse-

quently (although for different reasons) that certain contour lines have
measure zero. When a design is degenerate the design problem we consider
becomes the same as finding Pare;o optimal solutions for the vector
(fl(x), el fm(x)).‘ For this latter problem there is, of course, a sub-
stantial literature ([10], [16], [13]), thé discussion of which is beyond
the scope of this paper. We single out, however, the case where the
funct;ons fi are "planar" distances, say fi(x) = d(x, pi), as this case
is quite close in spirit to the warehouse design problem, and has provided ]
much of the impetus.for the study of the efficient design problem. For the
case where the distances are Euclidean, Kuhn [l1l1l] has demonstrated that the
set of all Pareto-optimal solutions is just the convex hull of Pys» =+es Pp-

m

Subsequently Wendell, Hurter, and Lowe [17] have studied the probleim for

an algorithm for finding all Pareto optimal solutions when p = 1. Their
work has in turn motivated work by Chalmet and Francis, who give a geo-
metrical solution procedure [1], as well as an order m log m algorithm [2]
for the case p = 1.

At this point we give an overview of the paper. Section 2 concentrates
on the contour-envelopes of designs. Given a design S, E(S) denotes the
contour-envelope of S, where E(S) = i:1{x e L fi(x) :-Gi(s)}' A design
intersection of contour sets. The remaining sections are devoted to estab-
lishing that conditions called the contour-envelope (C-E) conditions provide
necessary and sufficient conditions for a design to be efficient. For the

design problems discussed above, a design S satisfies the C-E conditions if

and only if the area of E(S)-S is zero. 1In order for the C-E conditions to
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characterize efficient designs, the functions fl’ lan s fm must be suffi-
ciently well structured. In Section 3 we take L to be a subset of Rn, and
refine the definition of a design. We show that if the disutility func-
tions fl’ e fm are meésurable, bounded above, and have

no "flat spoﬁs" (contour lines of positive measure, or area) then any effi-
cient design satisfies the C-E conditions. When the disutility functions
have flat spots, efficient designs need not satisfy the C-E conditions. 1In
Section 4 we establish that if the functions fl, sietaty fm are bounded above,
and are lower semicontinuous (implied by continuity) then any design satis-
fying the C-E cpnditions is efficient. Also we give an example showing if
the lower semicontinuity assumption is omitted (and replaced by an upper

semicontinuity assumption) that a design can satisfy the C-E conditions and
yet not be efficient. In Section 5 we tie results of earlier sections to-
gether to obtain necessary and sufficient conditions for the C-E conditions

to characterize efficient designs, and investigate additional results which

can be obtained when the disutility functions are convex.

. In the analysis of Sections 3 through 5 we make extensive use of
Lebesgue measure theory. However, by thinking of a measurable function as
an integrable function, and the measure of a set as the area (or volume,
or hypervolume) of a set, most of the analysis should be accessible with
knowledge of measure theory being unnecessary. Likewise, by thinking of
the supremum (or sup) of a function as the maximum (or max) oan function,
little or no insight is lost, since the maximum and supremum are identical

whenever the maximum exists.
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2. INITIAL RESULTS: THE CONTOUR-ENVELOPE

In this section we give an abstract statement of the design problem,

and present initial results, concentrating on the contour-envelope.

We assume given an arbitrary nonempty set L, as well as real-valued

disutility functions fl’ ates fm which have domain L and are bounded above

on L. For each x¢L we define the vector function
f(x) = (fl(x), S fm(x)) .

For every noneupty subset S of L we define

G;(s) = sup{fi(x) ye Sk Tis o< mp
G(s) = (Gl(S), oy Gm(S));
E(8) ={x el : £(x) < G(S)}
& E
= nixel: £, 26,(8)} . :
i=1 :

We note the assumption that fi is bound«d above on L guarantees th;t
Gi(S) is a (finite) real npmber for 1 < i < m. We assume given some pro- ;
perty, say Property P, such that a subset S of L is a design if S has
Property P, and denote by D the collection of all designs. For each SeD

we call G(S) the design disutility vector, and E(S) the contour-envelope

of S. Given any SeD we denote by DE(S) the collection of all designs which
are contained in E(S). We shall see that if SeD then SeDE(S) and so DE(S)
is always nonempty. Also, we define a design S* to beefficient if whenever any

design S satisfies G(S) < G(S*), then it must be true that G(S) = G(S*),

and denote by D* the collection of all efficient designs. 3

An immediate consequence of the definitions is
Lemma 1. (a) If SeD then ScE(S) and SeDE(S).
(b) Given S and S'eD, we have S'eDE(S) iff G(S') < G(S).

We can now use the lemma to obtain equivalent conditions for a design to

be efficient. i




Theorem 1, The following conditions are equivalent:

(a) SeD*

(b) SeD and S'eDE(S) implies G(S') = G(S),

(c) SeD and DE(S)c<D*.

Proof. (a) implies (b): Let SeD and S'eDE(S). Lemma 1(b) implies
 G(S') <G(S), so SeD* implies G(S') = G(S).

(b) implies (c): Let SeD and S'eDE(S). If S"eD and G(S") < G(S'),
then G(S') = G(S) gives G(S")‘j:G(S), so that Lemma 1(b) gives S"eDE(S).
Hence, by hypothesis, G(S") = G(S) and so G(S) = G(S') gives G(S") = G(S8'),
implying S'eD*, that is, DE(S)cD*.

(c) implies (a): Given SeD, Lemma 1(a) gives SeDE(S), so DE(S) < D*
implies SeD*. -

As an immediate consequence of Theorem 1, part b, we have
Corollary 1. If SeD and {S} = DE(S), then SeD*.

This corollary will guide the development in subsequeht sections, where
we obtain conditions for a design to be essentially the same as its
contour-envelope. Of closely related interest is Lemma 2, in preparation
for which we need several definitions. Given any vector k in Rm, we denote

by C(k) the following set:

m
C(k) = {x el : f(x) <kl = n{xelL: f,(x) <k,}
= . i =
i=1 :
| and call C(k) a contour set of f of value k. A set C is a contour set (of

£) if and only if there exists some k in R'such that C=C(k). We note, for

SeD, that E(S) = C(G(S)).
j i We now have
F‘ Lemma 2. Given SeD, we have S=E(S) iff S is a contour set of f.

Proof. Clearly S= E(S) implies S is a contour set of f. Conversely,

suppose S = C(k) for some k. The definition of C(k) and G(S) implies
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G(S) <k, and thus E(S) = {x e L : f(x) <G(S)} c {x e L : f(x) <k} =

C(k) = S, By Lemma 1(a), STE(S), and so it follows that S=E(S).
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3. NECESSARY CONDITIONS FOR EFFICIENCY

In this section we further refine our definition of a design, intro-
duce additional problem structure, and then, after developing the needed
machinery, establish necessary conditions for designs to be efficient.
These conditions show that designs are efficient when they are their own
contour-envelopes "almost everywhere."

We first establish needed assumptions and definitions. We assume
that L is a Lebesgue-measurable subset of Rn, with p(L) < =, and that f is
f are

1? cccr B

measurable. Also we assume f is bounded above on L. Given any

a measurable function from L into Rm, that is, f

set T in Rn, of positive measure, if zeT and TnN(z, &) has measure zero
for some positive epsilon (here N(z, €) is an open neighborhood with

center z and radius €) we call z an inessential point of T. Any point y

in T which is not an inessential point of T we call an essential point of T,

and denote by ess(T) the collection of all essential points of T. Given
a positive constant A, with A < u(L), we now define a design S by stating
that for S to satisfy property P means that S is a subset of L, of measure
A, such that S = ess(S), that is, every point in S is. an essential point.
We shall see that deleting the inessential points from a set of positive
measure leaves the measure of the set unchanged. Further, in many cases
inessential points constitute a mathematical pathology which cannot be
physically realized, in which case it is quite reasonable to assume de-
signs have no inessential points. The purpose of Lemmas 3 and 4 below is
to eliminate such pathologies. For most purposes "essential points" may
be thought of as just "points", and ess(T) as just T.

Given a set Q in R" and a set I of indices, a collection F= {Ti: iel}

of open sets is called .an open cover of Q if Q < U{Ti : iell}.
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In reference 8 (pps. 106-108), the Lindelsf theorem is given, a

special case of which we state as

f - Lemma 3. If Q is a subset of Rn, and F is an open cover of Q, then some
| countably infinite subcollection.of F is also an open cover of Q.
We can now establish
Lemma 4. Let T be a subset of Rn, of positive measure, and define
T'=ess(T). Then T' and T have the same measure, and ess(T') = T'.
Proof. Let I=T-T', so that I is the collection of all inessential points
of T, and so 1 consists‘of all the points x in T for which there exists
} € > 0 such that TnN;‘has measure zero, where Nx = N(x, ex). Since Nx
is an open set, if F is the collection of all such sets then F is clearly
- - an open cover of I. Lemma 3 then implies there is a countably infinite

open subcover, say F', of I, with F' = {Nx : xeI'}, where I'cI. It is a
basic result in measure theory (reference 15, p. 46) that the measure of

the union of a countably infinite number of sets, each of which has measure
zero, is also zero, and hence U{N_nT : xeI'} has measure zero. Thus, since
F' an open subcover of I implies I c u{Nx nT: xeI'}, I has measure zero,

;‘ and hence T' and T have the same measure.

Since T = T'uI,

T n N(x, €) = {T'" n N(x, €)} v {I n N(x, €)}

-

and p[I n N(x, €)] = 0, the remainder. of the proof follows readily.
Remark 1. Due to Lemma 4 it is reasonable to assume that every point in |

L, as well as every point in each design, is an essential point. Further,

PSP

if S c L and u(S) = A, then ess(S) is- a design.




In order for efficient designs to be effectively the same as their
contour-envelopes, it is necessary to rule out the case where the functions
fi have "flat spots." For example, take L = [0, »), A=1, m=1, f(x) = x
for @ < x < .5, £(x) = .5 for .5 <x %2 (a flat spot), f(g) =x - 1.5 for
2 < =z Givén the design S = [0, 1], G(S) = .5 and E(S) = [0, 2], and yet
S is clearly efficient.

Given the functions fi’ 1 <1i<m we define a contour line of fi to
be the set {xeLi : fi(x) = ki}’ where ki is any real number. (We note a

contour line need not actually be a line or even a curve.) We say that

fi has a flat spot if some contour line of fi has positive measure. Thus
fi has no flat spots if every contour line of fi has measure zero. We say

that £ has no flat spots if fi has no flat spots for 1 < i < m.

It is-also convenient to define the function w(y), for every yeRm,
by w(y) = u[C(y)]. The following result is proven in the appendix.
Lemma 5. If every fi is measurable and if the function f has no flat
spots, then the function w(y), where

w(y) =u{xel : £(x) <y},
is continuous on R".

We remark that Lemma 5 is false if f has flat spots.

Lemma 6. Suppose f has no flat spots. If y, zeR™ with w(y) < A < w(z), then

there exists x on the line segment joining y and z such that w(x) = A.
Proof. For 0 < A < 1, define the function h by
h(A) = w(rz + (1-)\)y).
For fixed z and y, Az + (1-\)y is continuous in A, and so, since w is

continuous by Lemma.5, h is the composition of two continuous functions and

hence is continuous. Since h(0) = w(y) and h(l) = w(z) we have h(0) <A<h(l),

and the intermediate value theorem now implies there exists A, 0 < XA < 1,
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such that h(A) = A, so that
w(Az + (1-1)y) = A.
With x = Az + (1-)A)y the conclusion follows.
We note that w(y) > 0 for all yeRm. The following lemma, proven in the
appendix, establishes w takes on values arbitrarily close to zero.
Lemma 7. For any € > 0 there exists zeR™ such that w(z) < €.

In what follows, given a design S, when we say S = E(S) almost every-

where (abbreviated a.e.) we mean, since S c E(S) by Lemma 1(a), that

E(S) - S has measure zero, which in turn means that S and E(S) ﬁave the

same measure, A. We can now establish the main result of this section.

We remark that the proqf is constructive and, when .combined subsequently
with the results of Theorem 6, suggests one way of constructing efficient
designs.

Theorem 2. Assume f has no flat spots. For any SeD, 35'e<D such that

G(S') < G(S) and S' = E(S') a.e.; further, if A < u[E(S)] then G(S') # G(S).
Proof. Let SeD and v = G(S). Using Lemma 1(a), we have

A < u[E(S)] = u{xeL : £(x) < v} = w(v).
By Lemma 7 there exists u'eR" such that w(u')<A. Define u to be the vector
whose ith entry is the minimum of the ith entries in u' and v, so that
u<u',us<v. Clearly w(u) < w(u'). Thus w(u) < A < w(v). Lemma 6 now implies
there exists w on the liqe segment joining u and v such that w(w) = A.
Further, if A < w(v) = u[E(S)], then clearly w # v. Also, since w=Au+ (1-)\)v
for some A, .Oikil, and u iv, we have w < v.
Define ; = C(w), so that u(g) = A. Letting S' = ess(g) and using
Remark 1 we conclude S' is a design. Since s'cs » G(8') < w. Since

w<ve=0_G(S), and w # v 1f A < u[E(S)], we conclude G(S') < G(S), and

11




G(S') # G(S) if A < u[E(S)]. Further, since S'<E(S') by Lemma 1(a), and
since E(S') < S as G(S') < w, we have A = u(S') < u[E(S")] j_u(g) = A, which
implies S' = E(S') a.e.

As a corollary of Theorem 2 we have

Theorem 3. Assume f has no flat spots. If SeD* then S = E(S) a.e.

Proof. If S # E(S) a.e. then A < u[E(S)], in which case Theorem 2 implies

there: exists a design S' for which G(S') < G(S) and G(S') # G(S), contra-

dicting the fact that SeD*. Thus S = E(S) a.e.




4. SUFFICIENT CONDITIONS FOR EFFICIENCY

In this section we establish conditions on the functions in f such

that if SeD, and S = E(S) a.e., then SeD*.

It is helpful first to consider an example, Take L = [0,»), A =1,
m=1, f(x) = x for 0 <x <1and f(x) = x+ 1 for 1 < x. Consider the
designs S = [0,1] and S' = [0,1), for which G(S) = 2 and G(S') = 1, so
that E(S) = [0,1], E(S') = [0,1). Here S = E(S), but S¢D*, since G(S') <G(S).
However S' = E(S') and S'eD*. This example illustrates that a design can
be its own contour-envelope and yet not be efficient; further, such a
situation occurs when f is discontinuous. More specifically, the function
f for this example is upper semiéoncinuous (USC). (For f to be USC means
that -f is LSC, as defined below.) Hence imposing upper semicontinuity
is inadequate to guarantee that designs which are their own contour-

envelopes a.e. are efficient.

For 1 < i < m the function f, is said to be lower semicontinuous (LsC)
at yeL if, given any ¢ > 0, there exists § > 0 such that fi(y) < fi(x) + €

for x € N(y,§) n L. The function fi is LSC if fi is LSC at every point in

L, 1 <i<m. The function £ is LSC if fi is LSC for 1 < i < m. For a good
summary -discussion of LSC, see reference 13. (We note if the above example
3 were changed so that f(x) = x for 0 < x < 1, and f(x) = x + 1 for 1 < x,

that £ would be LSC.) Fortunately, we shall see that it is enough, for

! the general problem, for f to be LSC in order to obtain the results we seek.
We now establish the following lemma. k

4 y Lemma 8. Suppose S' -and S are measurable subsets of R", both of measure A> 0,

that S'cS, and S = ess(S). If h is a real-valued and LSC function on Ss

bounded from above on S, then
sup{h(x) : xeS'} = sup{h(x) : xeS} .

Proof. Suppose to the contrary that

13
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o' = sup{h(x) : xeS'} < o = sup{h(x) : xeS} .
(It is clear that o' < 0.) Let n satisfy 0 < n < o-0', and let
S" = {xeS : h(x) > o' + n}. Since o' + n_< o, the definition of ¢ implies
S" # @, as otherwise ¢ = sup{h(x) : xeS} < o' + n < 0. Therefore, let yeS':
we may choose € so that

0 <e <h(y) - (¢" +n). (1)
Since h is LSC on S there exists § > 0 such that

h(y) - € < h(x) for xeN(y,8) n S, (ii)
so (1) and (ii) imply '

o' +n <h(x) for x ¢ N(y,8) n S :
and hence {N(y,8) n S} < S". Since S = ess(S), u[N(y,G) n 8] > 0, and thus
u(s") > 0. Now clearly S' n S" = @ and so

A= u(s8") <u(s") + u(s") = u(s' v s") <u(s) = A,
giving a contradiction.

We remark that the above example of this section with h = f, where f
is USC instead of LSC, illustrates the lemma is false if h is not LSC.
We next establish the main result of this section.

Theorem 4. Assume f is LSC on L, and bounded above on L. If SeD and
S = E(S) a.e., then SeD*. |
Proof. Let S satisfy the hypotheses. By Theorem 1, we know it is enough
to establish G(S') = G(S) if S' ¢ DE(S). With T = E(S) - S, 8'S =8"ns,

S'nT, we know S' < E(S) and ScE(S) imply S' = S'S v S'T and

S'T
A= u(S'") = u(s's) + u(s't). Since S = E(S) a.e., u(T) = 0, and thus
u(8'T) = 0, giving u(S'S) = A. Now since S'S c S, L(S'S) - u(s),
S = ess(S) by hypothesis, and fi is LSC on L, Lemma 8 implies, for

1 <1i<m that




sup{fi(x) : xeS'S} = sup{fi(x) : xeS} ,
and hence

G(S) = G(s'S). (1)
Since S'S ¢ S' < E(S), we have

G(s'S) < G(s') < G[E(S)]. (ii)
The definitions of E(S) and G(S), and Lemma 1(a), give

G[E(S)] = G(S). (iii)
From (i), (ii), and (iii) we have G(S) = G(S'), which completes the proof.

The following corollary of Theorem 4 gives some indication of how ex-

tensive the collection of all efficient designs can be. In particular,
every contour set of f of measure A contains an efficient design.
Corollary 2. Assume f is LSC on L, and bounded above on L. If S is any
contour set of f of measure A, and S' = ess(S), then S'eD*.
Proof. Since S is a contour set of £, S = E(S) by Lemma 2. Since S' < S,
E(S') < E(S). Lemma 1 implies S < E(S). By Remark 1, S' is a design. Thus
A= u(s"') < u[E(S")] < ulE(S)] = u(S) = A, and hence S' =_E(S) a.e. Theorem 4

now implies S'eD*.

15
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3. THE CONTQUR-ENVELOPE CONDITIONS, AND CONVEXITY

Given a design S, we call the condition S = E(S) a.e. the contour-

envelope condition. When f is bounded above, measurable, and has no flat

spots, we have seen that the éontour-envelopé conditions are necessary (but
not sufficient) for designs to be efficient. When f is bounded above and
each fi is LSC, we have seen that the contour-envelope conditions are suf-
ficient (but not necessary) for designs to be efficient. We define f to be

well-structured if f is bounded above, fi is LSC 1 < i <m, and f has no flat

spots. It is known, because contour sets of LSC functions are relatively
closed in L, and such relatively closed sets are measurable, that LSC of a
real-valued function implies measurability. Hence if f is well-structured
the contour-envelope conditions are both necessary and sufficient. Further,
the assumption of no flat spots cannot be omitted if the contour-envelope
conditions are to be both necessary and sufficient. To summarize matters,

as a result of Theorems 3 and 4 we have

Theorem 5. Assume f is well-structured, and let SeD. We have SeD* if and

only if S = E(S) a.e.

As a result of Theorem 5, we can readily strengthen Theorem 2, to obtain

Theorem 6. Assume f is well-structured. For any SeD ¢4 S'eD* such that

G(s') < G(S).

. We note Theorem 6 implies D* is nonempty wheﬁever D is nonempty.

We shall now see that if f is convex (i.e., every fi is convex) and if
L is a convex set, then additional conclusions may be drawn about efficient

designs. For example, for any SeD, E(S) is always a convex set, and so

Theorem 5 implies any efficient design is a convex set a.e.

16
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Proof. Since C ¢ c2(C) any open set T intersecting C intersects c%(C) as

To obtain additional results, some notation will be convenient. Following
reference 14, given any convex set C in R" we denote by int(C), ri(C),
cl(C), and aff(C), the interior, relative interior, closure, and affine
hull of C respectively. With these definitions we proceed to establish
several necessary intermediate results.
Lemma 9. If C is a convex set in Rn, of positive measure, then int(C) =ri(C) # 0.
Proof. If aff(C) is contained in an intersection of hyperplanes, then u(C) =0,
as each hyperplane has measure zero. Thus aff(C) = Rn, in which case (refer-~
ence 14, p. 44, par. 6), ri(C) = int(C). By Theorem 6.2 of reference 14,
ri(C) # 0.
Lemma 10. If C is a convex set in Rn, of positive measure, then every open

set intersecting C also intersects int(C).

well. Corollary 6.3.2 of reference 14 implies every open set intersecting

c2(C) intersects ri(C). Thus, using Lemma 9, if T intersects C then T inter-
sects int(C).
Corollary 3. If C is any convex set in R" of positive measure, then C = ess(C),
that is, every point in C is an essential point.
Proof. Given any yeC and 6>0, it suffices to show C n N(y,§) contains a hyper-
sphere of positive radius. Given thé hypotheses, since N(y,§) is an open
set intersecting C, Lemma 10 implies 4 u ¢ int(C) n N(y,8). Since we int(C)
4 ©>0 such that N(u,t) < C. Since u ¢ N(y,8) and N(&,G) is an open set
4 r>0 such that N(u,r) < N(y,8). Letting € = min(t,r) > 0, it is clear
that N(u,e) <« C n N(y,&); which completes the proof.
As a consequence of'Corollary 3 we have
Remark 2. Assﬁme.L is a convex set. Any convex subset of L, having measure

A, is a design.

17




Corollary 2, Remark 2, and basic convexity results give
Corollary 4. Assume f is convex and L is a convex set. Any contour set of
f of measure A is an efficient design.
Finally, we eStéblish
Theorem 7. Assume f is convex and well-stxuctured, and L is a convex set.
For any SeD the following are equivalent:
(a) SeD*
(b) E(S) €D
(c) E(S) e D*,
Proof. (a) implies (b): If SeD*, Theorem 5 implies S = E(S) a.e., implying
-p[E(S)] = A. Corollary 4 now implies E(S) € D.
(b) implies (c): Let S' = E(S). Lemma 2 implies S' = E(S') a.e.
Thus, since S'e¢D, Theorem 5 implies S'eD*.
(c) implies (a): Let S' = E(S) € D*, so that u(S') = A. Lemma 1
implies S < E(S) = S', and so A = u(S) < u[E(S)] = A, implying S = E(S) a.e.

Theorem 5 thus implies SeD%*.
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APPENDIX
In reference 9, p. 38, two theorems say the following:
Theorem Al: If {En} is an increasing sequence of measurable sets for which
lim {En} is mgasurable, then lim A u(En) = u(limn En).
Theorem A2: If {En} is a decreasing sequence of measurable sets for which
lim {En} is measurable and some W(E ) is finite, then u(limn En) = lim u(E ).
We will apply these two theorems to establish the continuity of w(z)
.when f is measurable and f has no flat spots. We remark that for the case
where omega is defined on the reals Lemmas Al and A2 are related to having

R

omega continuous from below and from above respectively.

Subsequently, for convenience, we let e denote the vector in R™ having
all unit entries.

Lemma Al: Given y € Rm, if f has no flat spots then, for any € > 0, there

1
w(y -‘% e) > w(y) - € for any n Z_Nl.

exists a positive integer N, such that

Proof: For n =1, 2, ..., let

& 1
En = C(y 3 e).
Then each En is measurable since L and f are measurable, and El c E2 C oo
Further it can be shown that

limE =vE =E:= fx el : £(x) < y}
n n

L and f measurable imply E measurable.

Now we note that

m
{C()-Elec uixel: £,(x) =y}
i i
i=1
and, since contour lines of each fi have measure zero, we have
m
0 <ufc(y) =E] <uf[u{xel: fi(x) -.yi}] = Q. i
i=1 '

Thus u(E) = u(C(y)) = p(y). By Theorem Al, when n increases,
Wy == &) + u(B), so w(y -+ & > w@).

In particular, for any € > 0, { Nl such that

|w(y "% e) - w(y)| < € for all n >N,

so that

w(y) - € < w(y - %-e) for all n 3_N1.
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Lemma A2: Given y ¢ Rm, assume
w(y®) < » for some y° >y, y° ¢ px,
(We note this assumption is valid since u(L) < =.)
Given any € > 0, there exists a positive integer N2 such that

w(y +-l]ie) < w(y) + € for all n 2 N,.

Proof: Let En = C(y + % e). Since L and f are measurable, each En is

measurable.
Also E 1 > EZ D..es Further, it can be shown, when n increases, that 1
l:Lmu En = N En = C(y).

n 1
Thus, by Theorem A2, :
w(y +%— e) » w(y).
Thus, given any ¢ > 0, 1§ N2 such that
lw(y +'% e) - w(y)| < e for all n 3_N2
so that

w(y +% e) < w(y) +¢ for all n > N,.

Theorem A3: If f has no flat spots then the function w is continuous.
Proof: Given any ¢ > 0, we shall show § N such that

if m;xlzj-yj|i%, or, if
1 1
y-gestziy+ge, : ¢V
then = = :
lu(2) - (| <€, (2)
delus w(y) - € <w(z) < w(y) + €. : (3)

From Lemmas Al and A2 with N = max (Nl, NZ) we have

w(y + -113 e) <uw(y) +¢ (4)

and w(y) - € < w(y - %e). (5)
From (1), since w is nondecreasing we have

w(y - % e) <w(z) < uw(y +% e). (6)




T T

Using (4) and (5) in (6) gives (3) and thus (2).
Note that f does not have to be continuous for this proof to hold.

' Lemma A3:
Proof: For each positive integer k, let Sk

Then each set S, has finite measure, and S

Hence w is continuous.

Suppose € > 0. Then there is y ¢ R" with w(y) < €.-
= {x el : f(x) < (=k, .., =k)}.

Theorem A2 that

but

SO

k=1

u( ns)) = 1lim u(s,);
k=1 L k- k

-]

ns, = 2,

lin u(s) = 0.
ko

1

:sz

Thus there is a positive integer k with u(Sk) <
w(y) =u(s) <e. 0O

=)

€.

«s.. It follows by

Then; if y= (<k, ..., =-k),




